$p$ Mean Integrability and Almost Sure Asymptotic Stability of Solutions of Itô-Volterra Equations
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولPth MEAN ASYMPTOTIC STABILITY AND INTEGRABILITY OF ITÔ–VOLTERRA INTEGRODIFFERENTIAL EQUATIONS
Sufficient conditions for the pth mean stability and integrability of the solutions to non-linear Itô–Volterra integrodifferential equations with nonconvolution drift and diffusion terms are investigated in this paper. Asymptotic convergence rates in pth moment sense are also discussed for the convolution case with infinite delay.
متن کاملBounded Solutions of Almost Linear Volterra Equations
Fixed point theorem of Krasnosel’skii is used as the primary mathematical tool to study the boundedness of solutions of certain Volterra type equations. These equations are studied under a set of assumptions on the functions involved in the equations. The equations will be called almost linear when these assumptions hold. AMS Subject Classifications: 45D05, 45J05.
متن کاملAlmost-sure Explosive Solutions of Some Nonlinear Parabolic Itô Equations
The paper is concerned with the problem of explosive solutions to a class of nonlinear parabolic Itô equations. Under some sufficient conditions on the initial state and the nonlinear coefficients, it will be shown that the solutions will explode in finite time almost surely. Theorem 3.1 is concerned with the existence of a unique local strong solution. The main result is presented in Theorem 3...
متن کاملStability properties and existence theorems of pseudo almost periodic solutions of linear Volterra difference equations
Correspondence: [email protected]. ac.jp Department of Information Science, Okayama University of Science, 1-1 Ridai-chyo, Kitaku, Okayama 700-0005, Japan Abstract The purpose of this article is to discuss the existence of pseudo almost periodic solutions of linear Volterra equation: x(n + 1) = A(n)x(n) + ∑n s=−∞ F(n, s)x(s) + p(n) , n Î Z, by using an exponentially stable of the zero solution, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Integral Equations and Applications
سال: 2003
ISSN: 0897-3962
DOI: 10.1216/jiea/1181074980